skip to main content


Search for: All records

Creators/Authors contains: "Aceves, A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
    Abstract We demonstrate a new practical approach for generating multicolour spiral-shaped beams. It makes use of a standard silica optical fibre, combined with a tilted input laser beam. The resulting breaking of the fibre axial symmetry leads to the propagation of a helical beam. The associated output far-field has a spiral shape, independently of the input laser power value. Whereas, with a high-power near-infrared femtosecond laser, a visible supercontinuum spiral emission is generated. With appropriate control of the input laser coupling conditions, the colours of the spiral spatially self-organize in a rainbow distribution. Our method is independent of the laser source wavelength and polarization. Therefore, standard optical fibres may be used for generating spiral beams in many applications, ranging from communications to optical tweezers and quantum optics. 
    more » « less
  3. null (Ed.)
    Recent work have shown light confinement can occur during propagation through a twisted coreless photonic crystal fiber (a chiral fiber). In the absence of a twist, the modal profile is assumed known from Bloch theory and assumed not to be confined. By use of asymptotic techniques applied to the field propagation equation, we provide a theoretical framework in support of observed confinement. While we do this for a particular periodic index profile, recent experiments suggest this to be a robust effect. In this work, we also explore the problem both in the linear and the nonlinear regime. We show that an increase in twist rate will result in more confined modes and indications that nonlinearity plays a secondary role on confinement. 
    more » « less
  4. Many sequential decision making tasks can be viewed as combinatorial optimiza- tion problems over a large number of actions. When the cost of evaluating an ac- tion is high, even a greedy algorithm, which iteratively picks the best action given the history, is prohibitive to run. In this paper, we aim to learn a greedy heuris- tic for sequentially selecting actions as a surrogate for invoking the expensive oracle when evaluating an action. In particular, we focus on a class of combinato- rial problems that can be solved via submodular maximization (either directly on the objective function or via submodular surrogates). We introduce a data-driven optimization framework based on the submodular-norm loss, a novel loss func- tion that encourages the resulting objective to exhibit diminishing returns. Our framework outputs a surrogate objective that is efficient to train, approximately submodular, and can be made permutation-invariant. The latter two properties al- low us to prove strong approximation guarantees for the learned greedy heuristic. Furthermore, our model is easily integrated with modern deep imitation learning pipelines for sequential prediction tasks. We demonstrate the performance of our algorithm on a variety of batched and sequential optimization tasks, including set cover, active learning, and data-driven protein engineering. 
    more » « less
  5. null (Ed.)
    Abstract We experimentally demonstrate the spatial self-cleaning of a highly multimode optical beam, in the process of second-harmonic generation in a quadratic nonlinear potassium titanyl phosphate crystal. As the beam energy grows larger, the output beam from the crystal evolves from a highly speckled intensity pattern into a single, bell-shaped spot, sitting on a low energy background. We demonstrate that quadratic beam cleanup is accompanied by significant self-focusing of the fundamental beam, for both positive and negative signs of the linear phase mismatch close to the phase-matching condition. 
    more » « less